

ポリエステル生地と衣類のシンチレーション現象と放射線照射表面イメージング への利用

山本 誠一 Yamamoto Seiichi

1. はじめに

放射線治療は腫瘍の治療に広く用いられています が,治療時に放射線ビームを肉眼で見ることができ ません。患者の位置決めを正確に行った後,治療装 置を信頼し,自動で放射線を照射します。しかし, 患者の動きや解剖学的な形状変化,あるいは何らか の原因により,放射線が正確に照射されていない可 能性もあります¹⁾。この問題点を解決するために放 射線ビーム位置を照射中に画像化する方法が研究さ れています。

患者に照射する放射線ビームをリアルタイムで検 証する方法として、これまで照射時に生じるチェレ ンコフ光を画像化することが試みられています²⁻⁵。 荷電粒子が光より速く物質を通過することでチェレ ンコフ光は発生します。この手法は、放射線を照射 した組織から放出されるチェレンコフ光を画像化す ることで、放射線が照射された位置を視覚的に確認 できます。これにより放射線治療用リニアック (LINAC)からの高エネルギーX線に対するマルチ リーフコリメータ(MLC)の動き等を検出可能にし、 放射線治療の品質保証における精度向上が期待され ています^{6.7)}。

一方で、陽子線治療等の粒子線治療では、使用する陽子線ビームのエネルギーにおいて、チェレンコフ光は、ほとんど生成せず^{8,9)}、リアルタイムでのビームの画像化は難しいという問題があります。水や生体組織は、チェレンコフ光の発生する閾値以下のエネルギーの放射線に対して、微量の光しか発しません⁸⁻¹⁰⁾。このため、この発光の観察には高感度

カメラと暗箱が必要で、撮像時間も長くかかり、リ アルタイム計測は困難です⁸⁻¹⁰。

この問題を解決するために,筆者らは粒子線照射 でシンチレーションを起こす素材として、ポリエス テル生地と衣類に着目しました。放射線によって光 を発する衣類があれば、治療を受ける患者がそれを 着ることで、陽子線ビームの照射状態をリアルタイ ムで画像化し、確認できる可能性があります。これ までにポリエチレンテレフタレート (PET) 製の板 が、放射線照射により発光することが報告されてい ます¹¹⁾。ポリエステルとPETは,同じ化学式 (C10H8O4) を持っており、放射線に対する応答も似 ている可能性があると予想しました。本報告では、 ポリエステル生地やTシャツ、水泳キャップ等の 衣類に放射線を照射することで実際に光を発するこ とを示すと共に、その発光特性を調べました。また ポリエステル生地と衣類が、陽子線ビームの照射位 置確認に役立つ可能性があることを、実験で確認し たので概要を紹介します¹²⁾。

2. α粒子に対するポリエステル生地 の波高分布測定

図1には、5.4 MeVのα粒子を照射したポリエス テル製のTシャツ、水泳キャップ、及びプラスチッ クシンチレータの発光を、光電子増倍管で電気信号 に変換し、マルチチャンネルアナライザーで計測し た電気信号の波高分布を示します。横軸は、α粒子 照射により発生した電気信号の波高値、すなわち発 光強度を示し、縦軸はこの発光が生じたイベント数

を表しています。

ピークの位置に対応する横軸のチャンネル数は, α粒子照射による材料からの発光量を示していま す。ポリエステル製のTシャツと水泳キャップの 分布には明確な単一のピークが観察されました。一 方で,木綿製のTシャツや麻の布,アクリルやナ イロン製の布では信号は検出されず,光電子増倍管 からのノイズ信号のみが観測されました。

プラスチックシンチレータと比較したポリエステ ルTシャツ及び水泳キャップの発光量は、プラスチッ クシンチレータが α 粒子に対して 1000 photons/MeV の光を生成すると仮定すると、それぞれ、 100 photons/MeV, 180 photons/MeV で、プラスチッ クシンチレータの 10~20%発光することが分かり ました。

3. X線誘起発光波長スペクトル

X線照射によって得られたポリエステル製衣類の X線誘起発光波長スペクトルを図2に示します。発 光はおよそ400~600 nm の範囲で生じており,約 440 nm にピークが観察されました。この発光波長 スペクトルは、プラスチックシンチレータと比較的 似ていました。

図2 ポリエステルTシャツのX線誘起発光波長スペクトル

図3 陽子線照射中のポリエステル製Tシャツ画像化実験の模式図

4. 陽子線ビームのポリエステル Tシャツ等による画像化

陽子線ビーム照射でポリエステル製衣類の発光が 画像化できるかどうか確認するために,陽子線治療 に利用されているビームを照射して,冷却 CMOS カメラを用いて画像化を試みました。図3に模式図 を示します。

陽子線が照射されている間,ポリエステル T シャ ツと水泳キャップの両方に明確なビームスポットが 観察されました。一方で,木綿の T シャツには観 察可能な信号は検出されませんでした。

陽子線ビームを照射していない状態でのポリエス テルTシャツの画像を図4(A)に示します。この 画像ではポリエステルTシャツだけが写ります。

図4(B)に、陽子線ビーム照射中の画像を示し ます。画像の中央に陽子線ビームの円形の発光が観 察され、動画で表示すると動いているのが明確に観

(A)

(B)

(C)

(D)

図 4 陽子線ビーム照射中のポリエステル T シャツの画像: 照射していない画像(A),照射中の画像(B),引き算画像(C), 及び加算画像(カラー領域)と背景画像の融合画像(D)

図 5 ポリエステル T シャツにおける陽子線照射発光画像の時間強度曲線

察されました。

陽子線ビーム照射中の画像から照射していない画 像を差し引いた画像を図4(C)に示します。この 画像では、背景の画像が見えなくなり、陽子線ビー ムの丸い発光部分のみが見えます。

図4(D)は、陽子線ビーム照射中のポリエステ ルTシャツの0.1s撮像の75枚の発光画像(カラー) と背景画像(白黒)を融合した画像を示します。ビー ムの照射位置を変えながら撮像されるので、複数枚 重ねると四角い画像になっているのが確認できまし た。

図5に、陽子線ビーム照射中のポリエステルT シャツの差分画像中の発光領域における時間強度変 化を示します。約1sの照射中の発光の時間と、約 2s続く発光していない時間が繰り返されているの が確認でき、陽子線治療システムの照射時間特性 (0.28 Hz)とほぼ一致しました。

5. 考察

筆者らは,陽子線照射により,ポリエステル製の 衣服が発光し,ビームの形状とその動きを明確に画 像化することに成功しました。これらのビームの発 光は,治療室の照明を消した上で,部屋に設置され ている液晶パネルに覆いを被せる程度の簡単な対策 により,CMOS カメラを使用して容易に撮像でき ました。ビームの画像化は,臨床条件における陽子 線ビーム照射に対して可能であったので,治療中の 患者の画像化にも応用できると考えられます。

陽子線治療中の患者表面におけるビームのリアル タイム画像化の利点の1つは、スキャンビームの異 常等、陽子線治療システムに関連するトラブルを検 出できる可能性があることが挙げられます。リアル タイム表面画像化がなければ、陽子線治療システム のこれらの問題に起因するトラブルを検出すること は困難です。提案する手法により、患者の表面に照 射される陽子線ビームの位置や、その強度の変化を 確認することが可能です。

ポリエステルTシャツと水泳キャップの陽子線 ビームによる発光は、ほぼ部屋の電気を消すだけの 環境において CMOS カメラで観察できましたが、 撮像には 0.1 s の露光時間を必要としました。陽子 線ビームを短い露光時間で画像化するためには、よ り高感度のカメラ又は光生成量が多い衣類が必要で す。

放射線照射波高分布の測定結果は、ポリエステル 衣服の発光波長が CMOS カメラの最大感度より短 いため、カメラで撮影した画像の強度が低下してい ることを示します。CMOS センサーの感度に合っ た長波長の発光する衣類等があれば、短い撮像時間 や、もっと明るい背景光の部屋での画像化を実現で きる可能性もあります。

提案するポリエステル生地や衣類は,陽子線治療 に限らず,炭素イオン,高エネルギーX線,LINAC からの電子線等,他の放射線治療ビームにも利用可 能と期待されます。

6. まとめ

ポリエステル生地と衣類が,陽子線ビーム照射時 に,照明を消すだけの環境で,検出可能な光を発す ることを確認しました。ポリエステル生地や衣類は いろいろな形状に加工可能で,また柔らかいので, 患者の体にフィットするものが作りやすく, 陽子線 治療中の表面ビーム画像化において使いやすいと思 われます。

ポリエステル生地と衣類の, 粒子線治療以外への 応用も期待されます。発光量はプラスチックシンチ レータの10~20%と比較的少ないですが, 柔らか く自由な形状で放射線照射による発光を観察したい 場合に利用できる可能性があります。コストは一般 的なシンチレータと比較にならないほど低いので大 面積のシンチレータとしても有望と考えられます。 現在,本研究成果をもとに,発光量を大幅に増やし たフレキシブルシンチレータを研究中です。

7. 謝辞

本研究は、早稲田大学理工学術院、神戸陽子線センター、東北大学未来科学技術共同研究センター、 東北大学金属材料研究所、大阪大学大学院医学系研 究科との共同研究として行われました。共同研究者 の皆様に感謝致します。また本研究は科学技術振興 機構 ERATO (JPMJER2102)、科研費(22H03019, 19H00672)の支援を得て実施されました。

参 考 文 献

- 1) M. Van Herk, Semin Radiat Oncol., 14(1), 52 (2004)
- 2) A. K. Glaser, et al., Phys Med Biol., 58(3), 601 (2013)
- 3) R. Zhang, et al., Med Phys., **40**(10) (2013)
- 4) J. L. Demers, et al., Opt Lett., 38(8), 1364 (2013)
- 5) A. K. Glaser, et al., Opt Lett., 38(5), 634 (2013)
- L. A. Jarvis, et al., Int J Radiat Oncol Biol Phys, 89 (3), 615 (2014)
- 7) L. A. Jarvis, et al., Int J Radiat Oncol Biol Phys, 109 (5), 1627 (2021)
- 8) S. Yamamoto, et al., Med Phys., 42(11), 6498 (2015)
- 9) S. Yamamoto, et al., Med Phys., 43, 2455-2463 (2016)
- 10) S. Yamamoto, et al., Opt Rev., 24, 428-435 (2017)
- 11) H. Nakamura, et al., Proc. R. Soc. A., 466, 2847 (2010)
- 12) S. Yamamoto, et al., Sci. Rep., 14, 13494 (2024)

(早稲田大学 理工学術院)